6963 Rohm Co. Ltd.

ROHM Builds the Future of AI with Optimized Solutions for NVIDIA 800V Architecture

ROHM Builds the Future of AI with Optimized Solutions for NVIDIA 800V Architecture

Santa Clara, CA, June 12, 2025 (GLOBE NEWSWIRE) -- As artificial intelligence continues to redefine the boundaries of computing, the infrastructure powering these advancements must evolve in parallel. A recognized leader in power semiconductor technology, ROHM is proud to be among the key silicon providers supporting NVIDIA’s new 800 V High Voltage Direct Current (HVDC) architecture. This marks a pivotal shift in data center design, enabling megawatt-scale AI factories that are more efficient, scalable, and sustainable.

ROHM’s power device portfolio spans both silicon and wide bandgap technologies, including silicon carbide (SiC) and gallium nitride (GaN), offering a strategic path for data center designers. The company’s silicon MOSFETs are already widely adopted across automotive and industrial sectors, providing a cost-effective and reliable solution for today’s power conversion needs. These are ideal for applications where price, efficiency, and reliability must be balanced, making them a strong fit for transitional stages of AI infrastructure development.

A standout example is the RY7P250BM, a 100V power MOSFET endorsed by major global cloud providers designed specifically for hot-swap circuits in 48V power systems—an essential component in AI servers. Key features include  best-in-class SOA (Safe Operating Area) performance and ultra-low ON resistance (1.86 mΩ) in a compact 8080 package. These characteristics help reduce power loss and improve system reliability—crucial requirements in high-density, high-availability cloud platforms. As data centers transition from 12V to 48V and beyond, hot-swap capability becomes critical for maintaining uptime and protecting against inrush currents.

Industrial-grade rectification with minimal losses is an area where ROHM’s SiC devices excel and align with NVIDIA’s plans to begin large-scale deployment of its 800V HVDC data center architecture to power 1 MW compute racks and beyond. At the heart of NVIDIA’s new infrastructure is the conversion of 13.8kV AC from the grid directly into 800V DC. The initiative is designed to address the inefficiencies of traditional 54V rack power systems, which are constrained by physical space, copper overload, and conversion losses.

ROHM’s SiC MOSFETs deliver superior performance in high-voltage, high-power environments, offering higher efficiency through reduced switching and conduction losses, greater thermal stability for compact, high-density systems, and proven reliability in mission-critical applications. These characteristics align perfectly with the requirements of the NVIDIA 800 V HVDC architecture, which aims to reduce copper usage, minimize energy losses, and simplify power conversion across the data center.

Complementing SiC, ROHM is advancing gallium nitride technologies under the EcoGaN™ brand. While SiC is best-suited for high voltage, high current applications, GaN offers exceptional performance in the 100V to 650V range, with superior breakdown field strength, low ON resistance, and ultra-fast switching. ROHM’s broad EcoGaNTM lineup includes 150V and 650V GaN HEMTs, gate drivers, and integrated power stage ICs. At the same time, proprietary Nano Pulse ControlTM technology further improves switching performance, reducing pulse widths to as low as 2ns. These innovations support the growing demand for smaller, more efficient power systems in AI data centers.

Beyond discrete devices, ROHM offers a lineup of high-power SiC modules, including top-side cooling molded packages such as the HSDIP20, equipped with advanced 4th Gen SiC chips. These 1200V SiC modules are optimized for LLC topologies in AC-DC converters and primary-side applications in DC-DC converters. Engineered for high-efficiency, high-density power conversion, they are particularly well-suited for the centralized power systems envisioned in NVIDIA’s architecture. Their robust thermal performance and scalability make them ideal for 800 V busways and MW-scale rack configurations.

The transition to an 800V HVDC infrastructure is a collaborative effort. ROHM is committed to working closely with industry leaders like NVIDIA as well as data center operators and power system designers to provide the foundational silicon technologies needed for this next generation of AI factories. Our expertise in power semiconductors, particularly in wide-bandgap materials like SiC and GaN, positions us as a key partner in developing solutions that are not only powerful but also contribute to a more sustainable and energy-efficient digital future.



Heike Mueller
ROHM Semiconductor
 
 
EN
12/06/2025

Underlying

To request access to management, click here to engage with our
partner Phoenix-IR's CorporateAccessNetwork.com

Reports on Rohm Co. Ltd.

 PRESS RELEASE

ROHM Builds the Future of AI with Optimized Solutions for NVIDIA 800V ...

ROHM Builds the Future of AI with Optimized Solutions for NVIDIA 800V Architecture Santa Clara, CA, June 12, 2025 (GLOBE NEWSWIRE) -- As artificial intelligence continues to redefine the boundaries of computing, the infrastructure powering these advancements must evolve in parallel. A recognized leader in power semiconductor technology, ROHM is proud to be among the key silicon providers supporting NVIDIA’s new 800 V High Voltage Direct Current (HVDC) architecture. This marks a pivotal shift in data center design, enabling megawatt-scale AI factories that are more efficient, scalable, and...

 PRESS RELEASE

New High Accuracy Current Sense Amps Compatible with Both Negative and...

New High Accuracy Current Sense Amps Compatible with Both Negative and High Voltages Santa Clara, CA and Kyoto Japan, June 11, 2025 (GLOBE NEWSWIRE) -- today announced they have developed a new lineup of high accuracy current sense amps – the and the . Both series are qualified under the AEC-Q100 automotive reliability standard. The BD1423xFVJ-C series, offered in the TSSOP-B8J package, supports input voltages up to +80V, making it ideal for high-voltage environments such as 48V DC-DC converters, redundant power supplies, auxiliary batteries, and electric compressors. The lineup include...

 PRESS RELEASE

ROHM Develops Breakthrough AI-Equipped MCU

ROHM Develops Breakthrough AI-Equipped MCU The industry's first MCU capable of predicting equipment anomalies via on-device learning and inference without a network Santa Clara, CA and Kyoto Japan, June 04, 2025 (GLOBE NEWSWIRE) -- today announced they have developed AI-equipped MCUs (AI MCUs) – / – that enable fault prediction and degradation forecasting using sensing data in a wide range of devices, including industrial equipment such as motors. These MCUs are the industry’s first* to independently execute both learning and inference without relying on a network connection. As th...

 PRESS RELEASE

ROHM Develops Compact Surface-Mount Near-Infrared LEDs Featuring Indus...

ROHM Develops Compact Surface-Mount Near-Infrared LEDs Featuring Industry-Leading Radiant Intensity Santa Clara, CA and Kyoto, Japan, May 22, 2025 (GLOBE NEWSWIRE) -- r today announced an expanded portfolio of surface-mount near-infrared (NIR) LEDs with new compact top-view types optimized for applications such as VR/AR devices, industrial optical sensors, and human detection sensors. The demand for advanced sensing technologies utilizing near-infrared (NIR) has grown in recent years, particularly in VR/AR equipment and biosensing devices. These technologies are used in applications suc...

Pelham Smithers
  • Pelham Smithers

PSA Electronic Components / Semiconductors: Can Rohm (6963 JT) Recover...

Pelham Smithers reviews the outlook for Rohm with the possibility to look more favourably on the stock should the SiC situation changes for the better.

ResearchPool Subscriptions

Get the most out of your insights

Get in touch